Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task

Marco Buiatti, David Papo, Pierre-Marie Baudonnière, and Carl Van VreeswijkAvatar Inv

Neuroscience, 146:1400-1412 (2007).

We used the electroencephalogram (EEG) to investigate whether positive and negative performance feedbacks exert different long-lasting modulations of electrical activity in a reasoning task. Nine college students serially tested hypotheses concerning a hidden rule by judging its presence or absence in triplets of digits, and revised them on the basis of an exogenous performance feedback. The scaling properties of the transition period between feedback and triplet presentation were investigated with detrended fluctuation analysis (DFA). DFA showed temporal scale-free dynamics of EEG activity in both feedback conditions for time scales larger than 150 ms. Furthermore, DFA revealed that negative feedback elicits significantly higher scaling exponents than positive feedback. This effect covers a wide network comprising parietooccipital and left frontal regions. We thus showed that specific task demands can modify the temporal scale-free dynamics of the ongoing brain activity. Putative neural correlates of these long-lasting feedback-specific modulations are proposed.

[Read more in Pubmed]     [Read more in Neuroscience]


Time-frequency intracranial source localization of feedback-related EEG activity in hypothesis testing

Papo, D., Douiri, A., Bouchet, F., Bourzeix, J.-C., Caverni, J.-P., & Baudonnière,

Cerebral Cortex, 17:1314-1322 (2007).

The neural correlates of the response to performance feedback have been the object of numerous neuroimaging studies. However, the precise timing and functional meaning of the resulting activations are poorly understood. We studied the electroencephalographic response time locked to positive and negative performance feedback in a hypothesis testing paradigm. The signal was convoluted with a family of complex wavelets. Intracranial sources of activity at various narrow-band frequencies were estimated in the 100- to 400-ms time window following feedback onset. Positive and negative feedback were associated to 1) early parahippocampo-cingular sources of alpha oscillations, more posteriorly located and long lasting for negative feedback and to 2) late partially overlapping neural circuits comprising regions in prefrontal, cingular, and temporal cortices but operating at feedback-specific latencies and frequencies. The results were interpreted in the light of neurophysiological models of feedback and were used to discuss methodological issues in the study of high-level cognitive functions, including reasoning and decision making.

[Read more in Cerebral Cortex]

Feedback in Hypothesis Testing: An ERP Study

Papo D, Baudonnière PM, Hugueville L, Caverni JPfeedback

Journal of Cognitive Neuroscience, 15:508-522 (2003).

We used event-related potentials (ERPs) to probe the effects of feedback in a hypothesis testing (HT) paradigm. Thirteen college students serially tested hypotheses concerning a hidden rule by judging its presence or absence in triplets of digits and revised them on the basis of an exogenous performance feedback. ERPs time-locked to performance feedback were then examined. The results showed differences between responses to positive and negative feedback at all cortical sites. Negative feedback, indicating incorrect performance, was associated to a negative deflection preceding a P300-like wave. Spatiotemporal principal component analysis (PCA) showed the interplay between early frontal components and later central and posterior ones. Lateralization of activity was selectively detectable at frontal sites, with a left frontal dominance for both positive and negative feedback. These results are discussed in terms of a proposed computational model of trial-to-trial feedback in HT in which the cognitive and emotive aspects of feedback are explicitly linked to putative mediating brain mechanisms. The properties of different feedback types and feedback-related deficits in depression are also discussed.

[Read more in Journal of Cognitive Neuroscience]