Assessing time series reversibility through permutation patterns

Zanin, M., Rodríguez-González, A., Menasalvas Ruiz, E., & Papo, D. 

Entropy, 20:665 (2018)

images (3)

Time irreversibility, i.e. the lack of invariance of the statistical properties of a system under time reversal, is a fundamental property of all systems operating out of equilibrium. Time reversal symmetry is associated with important statistical and physical properties and is related to the predictability of the system generating the time series. Over the past fifteen years, various methods to quantify time irreversibility in time series have been proposed, but these can be computationally expensive. Here we propose a new method, based on permutation entropy, which is essentially parameter-free, temporally local, yields straightforward statistical tests, and has fast convergence properties. We apply this method to the study of financial time series, showing that stocks and indices present a rich irreversibility dynamics. We illustrate the comparative methodological advantages of our method with respect to a recently proposed method based on visibility graphs, and discuss the implications of our results for financial data analysis and interpretation.

[Read more in Entropy]

Advertisements

Beyond the anatomy-based representation of brain function

D. PapoAvatar Inv

Physics of Life Reviews, 21:42-45 (2017).

Often, viz. in tumour removal procedures, neurosurgeons operate on a sedated but awake patient to precisely locate functional brain areas that must be avoided. To do so, brain regions are electrically stimulated while the patient performs tasks such as talking, counting or looking at pictures. The patient’s responses are then used to create a map of the functional areas of the brain and remove as much of the tumour as possible. In so doing, neurosurgeons parse the Euclidean space of brain anatomy to navigate into the space of cognitive function. However the map between these two spaces is not smooth, and the topology induced by local electrical stimulation non-trivial. So, how should stimulation be carried out, i.e. on what space should it act to render the application  smooth and the resulting topology “tractable”?

[Read more in Physics of Life Reviews]

Detecting switching and intermittent causalities in time series

M. Zanin and D. Papo

images (3)

Chaos, 27:047403 (2017).

In biological systems such as the brain, interactions can be fast and short-lived. However, robust causal relationships are usually quantified over time-windows much larger than functionally meaningful time scales. We propose a method to overcome this drawback and quantify causal dynamical connectivity in which every possible time window is considered and non-overlapping ones in which the causality is strongest eventually selected. Our results show that transient but not classical time-averaged causality estimations can discriminate between the electroencephalographic activity of a small sample of alcoholic subjects and a matched healthy control group. Differences between groups appear to be a local rather than a global network property. The implications of these results for the modelling of brain functioning and pathology are briefly discussed.

[Read more in Chaos]

The ACE brain

M. Zanin and D. Papo   eyes1

Frontiers in Computational Neuroscience, 10:122 (2016).

Neuroscientists’ models of brain functional organization, and in particular of how a given task recruits brain resources, bear important analogies with the way computer elements are arranged and activated to perform complex operations. In modern CPUs, data are distributed across different sub-units by a central controller, a structure inspired by the research performed in the 40s by von Neumann (1993). However, this is not the only possible configuration, and we compare it with the alternative proposed by Alan Turing in the same decade (Carpenter and Doran, 1986). How does the underlying model of computer functioning influence the way neuroscientists describe the brain? For instance, at a system-level of description, neuroscientists typically want to extract the minimum sub-system of the whole brain necessary to execute a given task. Suppose in particular that brain activity is endowed with a network representation (Bullmore and Sporns, 2009). What would the minimal subsystem look like? We propose that Turing’s approach is more representative of the human brain, and discuss when functional networks may yield misleading results when applied to such a system.

[Read more in Frontiers in Computational Neuroscience]

Commentary: The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs

D. PapoAvatar Inv

Frontiers in Human Neuroscience, 10:423 (2016).

The “entropic brain hypothesis” holds that the quality of conscious states depends on the system’s entropy [1]. Brain activity is said to become “more random and so harder to predict in primary states – of which the psychedelic state is an exemplar”. Psychedelic-induced brain activity would be associated with elevated entropy in some of its aspects with respect to normal wakeful consciousness. This would indicate that psychedelic-induced brain activity would exhibit criticality, while normal wakeful consciousness would be subcritical.

But can entropy be a unique indicator of the “quality of consciousness”? Are there reasons to believe that psychedelic-induced activity is not critical?

[1] Carhart-Harris, R.L., Leech, R., Hellyer, P.J., Shanahan, M., Feilding, A., Tagliazucchi, E., Chialvo, D.R., and Nutt, D. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs.Front. Hum. Neurosci. 8:20.

[Read more in Frontiers in Human Neuroscience]

Beware of the Small-world, neuroscientist!

D. Papo, M. Zanin,  J.H. Martínezand J.M. Buldúconn

Frontiers in Human Neuroscience, 10:96 (2016).

Whether or not the brain is indeed a SW network is still very much an open question. The question that we address is of a pragmatical rather than an ontological nature: independently of whether the brain is a SW network or not, to what extent can neuroscientists using standard system-level neuroimaging techniques interpret the SW construct in the context of functional brain networks? In a typical experimental setting, neuroscientists record brain images, define nodes and links, construct a network, extract its topological properties, to finally assess their statistical significance and their possible functional meaning. We review evidence showing that behind each of these stages lurk fundamental technical, methodological or theoretical stumbling blocks that render the experimental quantification of the SW structure and its interpretation in terms of information processing problematic, questioning its usefulness as a descriptor of global brain organization. The emphasis is on functional brain activity reconstructed using standard system-level brain recording techniques, where the SW construct appears to be the most problematic.

[Read more in Frontiers in Human Neuroscience]     [arXiv]

Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience

D. PapoAvatar Inv

Frontiers in Systems Neuroscience, 8:112 (2014).

Behavioural studies have shown that human cognition is characterized by properties such as temporal scale invariance, heavy-tailed non-Gaussian distributions, and long-range correlations at long time scales, suggesting models of how (non observable) components of cognition interact. On the other hand, results from functional neuroimaging studies show that complex scaling and intermittency may be generic spatio-temporal properties of the brain at rest. Somehow surprisingly, though, hardly ever have the neural correlates of cognition been studied at time scales comparable to those at which cognition shows scaling properties. Here, we analyze the meanings of scaling properties and the significance of their task-related modulations for cognitive neuroscience. It is proposed that cognitive processes can be framed in terms of complex generic properties of brain activity at rest and, ultimately, of functional equations, limiting distributions, symmetries, and possibly universality classes characterizing them.

[Read more in Frontiers in Systems Neuroscience]