Detecting switching and intermittent causalities in time series

M. Zanin and D. Papo

images (3)

Chaos, 27:047403 (2017).

In biological systems such as the brain, interactions can be fast and short-lived. However, robust causal relationships are usually quantified over time-windows much larger than functionally meaningful time scales. We propose a method to overcome this drawback and quantify causal dynamical connectivity in which every possible time window is considered and non-overlapping ones in which the causality is strongest eventually selected. Our results show that transient but not classical time-averaged causality estimations can discriminate between the electroencephalographic activity of a small sample of alcoholic subjects and a matched healthy control group. Differences between groups appear to be a local rather than a global network property. The implications of these results for the modelling of brain functioning and pathology are briefly discussed.

[Read more in Chaos]

Advertisements