The ACE brain

M. Zanin and D. Papo   eyes1

Frontiers in Computational Neuroscience, 10:122 (2016).

Neuroscientists’ models of brain functional organization, and in particular of how a given task recruits brain resources, bear important analogies with the way computer elements are arranged and activated to perform complex operations. In modern CPUs, data are distributed across different sub-units by a central controller, a structure inspired by the research performed in the 40s by von Neumann (1993). However, this is not the only possible configuration, and we compare it with the alternative proposed by Alan Turing in the same decade (Carpenter and Doran, 1986). How does the underlying model of computer functioning influence the way neuroscientists describe the brain? For instance, at a system-level of description, neuroscientists typically want to extract the minimum sub-system of the whole brain necessary to execute a given task. Suppose in particular that brain activity is endowed with a network representation (Bullmore and Sporns, 2009). What would the minimal subsystem look like? We propose that Turing’s approach is more representative of the human brain, and discuss when functional networks may yield misleading results when applied to such a system.

[Read more in Frontiers in Computational Neuroscience]

Advertisement