Functional brain networks: great expectations, hard times, and the big leap forward

D. Papo, M. Zanin, J.A. Pineda-Pardo, S. Boccaletti, and J.M. Buldúconn

Philosophical Transactions of the Royal Society B 369:20130525 (2014).

Many physicasample_cover PTRSBl and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode.

[Read more in Philosophical Transactions]    [Read more in ArXiv]       [Read interview in Phil. Trans Blog]    [Listen to podcast in Nature]

Advertisements

Parenclitic networks: uncovering new functions in biological data

images (3)M. Zanin, J. Medina Alcazar, J. Vicente Carbajosa, M. Gomez Paez, D. Papo, P. Sousa, E. Menasalvas, and S. Boccaletti

Scientific Reports, 4:5112 (2014).

We introduce a novel method to represent time independent, scalar data sets as complex networks. We apply our method to investigate gene expression in the response to osmotic stress of Arabidopsis thaliana. In the proposed network representation, the most important genes for the plant response turn out to be the nodes with highest centrality in appropriately reconstructed networks. We also performed a target experiment, in which the predicted genes were artificially induced one by one, and the growth of the corresponding phenotypes compared to that of the wild-type. The joint application of the network reconstruction method and of the in vivo experiments allowed identifying 15 previously unknown key genes, and provided models of their mutual relationships. This novel representation extends the use of graph theory to data sets hitherto considered outside of the realm of its application, vastly simplifying the characterization of their underlying structure.

[Read more in Scientific Reports]        [Read more in ArXiv]