A. Tozzi and **D. Papo**

*Progress in Biophysics and Molecular Biology, ***151**:1-13 (2020)

Causal relationships lie at the very core of scientific description of biophysical phenomena. Nevertheless, observable facts involving changes in system shape, dimension and symmetry may elude simple cause and effect inductive explanations. Here we argue that numerous physical and biological phenomena such as chaotic dynamics, symmetry breaking, long-range collisionless neural interactions, zero-value energy singularities, particle/wave duality can be accounted for in terms of purely topological mechanisms devoid of causality. We illustrate how simple topological claims, seemingly far away from scientific inquiry (e.g., “given at least some wind on Earth, there must at all times be a cyclone or anticyclone somewhere”; “if one stirs to dissolve a lump of sugar in a cup of coffee, it appears there is always a point without motion”; “at any moment, there is always a pair of antipodal points on the Earth’s surface with equal temperatures and barometric pressures” ) reflect the action of non-causal topological rules. To do so, we introduce some fundamental topological tools and illustrate how phenomena such as double slit experiments, cellular mechanisms and some aspects of brain function can be explained in terms of geometric projections and mappings, rather than local physical effects. We conclude that unavoidable, passive, spontaneous topological modifications may lead to novel functional biophysical features, independent of exerted physical forces, thermodynamic constraints, temporal correlations and probabilistic a priori knowledge of previous cases.

[Read more in *Progress in Biophysics and Molecular Biology*]

*Keywords*: topology; topological explanation; causality; Poincaré-Hopf theorem; hairy ball theorem; Borsuk-Ulam theorem; Kneser graph; non-Hermitian systems